If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+14x=75
We move all terms to the left:
5x^2+14x-(75)=0
a = 5; b = 14; c = -75;
Δ = b2-4ac
Δ = 142-4·5·(-75)
Δ = 1696
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1696}=\sqrt{16*106}=\sqrt{16}*\sqrt{106}=4\sqrt{106}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-4\sqrt{106}}{2*5}=\frac{-14-4\sqrt{106}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+4\sqrt{106}}{2*5}=\frac{-14+4\sqrt{106}}{10} $
| 5a+1=2a+19 | | 68+(2x)=180 | | 2x+3/4+x-5/3=2 | | 7-(a+1)=9-(3a-1) | | 5.m=16 | | 12x+6+144=180 | | (2x-5)+62+41=180 | | 30+130+(4x)=180 | | X+0.25x=15000 | | 40+95+(5x)=180 | | 17=5-3(t+2) | | 40+90+(5x)=180 | | 8+5=x+5 | | 20+25+(5x)=180 | | x5-4x4-32x3=0 | | 89-p=50 | | 15x-4,9x²=0 | | 2.x^2-x-11=0 | | (2x-5)+103=180 | | 15x-4,9x^2=0 | | 1.3x^2-10x+4=0 | | j+0.18=0.75 | | h/3=4.5 | | x²+18×-40=0 | | -24x-53=39+x | | 5+5(p+3)=60 | | h/0.4=1.75 | | 2x+9=27-x | | k+9.2=17.6 | | (28)(2/4)=x | | x²-3=61 | | 7x+19+57+90=180 |